Hi,

Could you remind me how to adaptmesh for 1D mesh ?

Thank

Hi,

Could you remind me how to adaptmesh for 1D mesh ?

Thank

No real way to day. Because it is trivial , Sorry

I try :

load “msh3”

meshL Th=segment(1000);

fespace Vh(Th, P2);

Vh u, v ;

solve Poisson ( u, v, solver = LU ) = int1d(Th) ( dx(u)*dx(v) + u*v )- int1d(Th) ( x*v )+

on ( 1, 2, u = 0.0 );

plot([xx,u],wait=1);

It works.

But not after:

meshL Th2 = adaptmesh(Th, u , err= 1E-5 )

The version is 4.11 and i have the following error message:

meshL Th2 = adaptmesh(Th, u , err= 1E-5 ) error operator ( ,

List of choices N5Fem2D4MeshE N5Fem2D4MeshE

Yes but they are no code after!

Ok je suis un peu long à la compréhension.

Il n’y a pas de fonction en 1D ? ou cela se fait de manière très simple ? ou c’est automatique ?

Désolé de vous faire revenir sur ce sujet.

IL n’y a pas le code associe,

but the code is simple for P1 approximation of u

- compute the metrix by regularization of de u'' in P1 ant than I call it m \sim 1/\varepsilon | u''|

where \varepsilon is the level of error in norm L^\infty.

Now the problem is to build a mesh such that the length in m are content and equal to 1 the mesh size.

the length of seg [a,b[] = \int_a^b \sqrt{|m|},

so if we call M the primitive of \sqrt{|m|}, then the mesh is image by N of regular mesh of mesh size class to 1, and where N is the inverse function of M