Hi , I am trying to solve steady boussinesq approximation of governing equations of flow compromising conservation of mass, momentum, energy. I weak formulated the equation and I need to use Newton raphson method to solve the non-linear residuals. I am requesting some guidance in how to solve problem of multiple coupled non linear residuals.
You have an example with comments in the FreeFem documentation p.75 :
Newton Method for the Steady Navier-Stokes equations
Thanks for your reply. I tried it. But I am implemented the following code and I made an error here. How to correct and identify it?
// Parameters
real Pr = 0.7;
real Ra = 1000;
real gamma = 100; // penalty parameter
real eps = 1e-5;
// Mesh
mesh Th = square(33, 33); // Labels: left=1, right=2, bottom=3, top=4
plot(Th, wait=true);
// Fespace
fespace Xh(Th, P2);
Xh u1, u2, v1, v2, du1, du2, u1T, u2T;
fespace Mh(Th, P1);
Mh T, q, dT, pp;
// Stream Function Space
fespace Ph(Th, P2);
Ph psi, phi;
// Macros
macro Grad(u1, u2) [dx(u1), dy(u1), dx(u2), dy(u2)] //
macro UgradV(u1, u2, v1, v2) [[u1, u2]'*[dx(v1), dy(v1)], [u1, u2]'*[dx(v2), dy(v2)]] //
macro div(u1, u2) (dx(u1) + dy(u2)) //
macro DivInner(u1, u2, v1, v2) ((dx(u1) + dy(u2)) * (dx(v1) + dy(v2))) //
macro Graddotgrad(T, q) (dx(q) * dx(T) + dy(q) * dy(T)) //
macro Advect(u1, u2, T) (u1 * dx(T) + u2 * dy(T)) //
// Initialization
u1 = 0;
u2 = 0;
T = 0;
// Viscosity loop
while (1) {
int n;
real err = 0;
// Newton loop
for (n = 0; n < 15; n++) {
// Solve velocity equation
solve velocity ([du1, du2], [v1, v2])
= int2d(Th)(
Pr * (Grad(du1, du2)' * Grad(v1, v2))
+ UgradV(du1, du2, u1, u2)' * [v1, v2]
+ UgradV(u1, u2, du1, du2)' * [v1, v2]
+ gamma * DivInner(du1, du2, v1, v2) // divergence penalty
- Ra * Pr * dT * v2
)
-int2d(Th)( Pr * (Grad(u1, u2)' * Grad(v1, v2))
+ UgradV(u1, u2, u1, u2)' * [v1, v2]
+ gamma * DivInner(u1, u2, v1, v2) // divergence penalty
- Ra * Pr * T * v2
)
+ on(1, u1=0, u2=0)
+ on(2, u1=0, u2=0)
+ on(3, u1=0, u2=0)
+ on(4, u1=0, u2=0);
// Solve temperature equation
solve Temperature ([dT], q)
= int2d(Th)(
Advect(du1, du2, T) * q
+ Advect(u1, u2, dT) * q
+ Graddotgrad(dT, q)
)
- int2d(Th)(
Advect(u1, u2, T) * q
+ Graddotgrad(T, q)
)
+ on(3, T = 1) // Hot bottom wall
+ on(4, T = 0); // Cold top wall
// Update fields
u1[] -= du1[];
u2[] -= du2[];
T[] -= dT[];
// Compute error with safeguard
real Lu1 = max(1e-10, u1[].linfty);
real Lu2 = max(1e-10, u2[].linfty);
real LT = max(1e-10, T[].linfty);
err = du1[].linfty / Lu1 + du2[].linfty / Lu2 + dT[].linfty / LT;
// Stop if convergence is reached
if (err < eps) break;
}
// Check convergence
if (err < eps) {
cout << "Converged after " << n << " Newton iterations.\n";
break;
}
}
There are several mistakes in your code:
– default labels bottom=1, right=2, top=3, left=4
– in a variational formulation you have to separate (ie in different int2d()) the terms linear with respect to the unknown and the terms which do not depend on the unknown
– boundary conditions on() : only the unknowns are allowed (du1,du2) in “velocity”, dT in “Temperature”
– it is better to resolve both velocity and temperature together in order to have fast convergence of the Newton iteration
– You have to set the boundary conditions on the updated values u1-du1, u2-du2, T-dT. Thus to set these values to 0,0,1 respectively you need to set
+ on(1,2,3,4, du1=u1, du2=u2) //(meaning u1-du1=0, u2-du2=0)
+ on(1, dT = T-1) //(meaning T-dT=1)
boussinesq.edp (2.6 KB)
I am doubtful of the penalty method for div u=0. Probably it gives wrong results because of no inf-sup stability. You have to use rather a variational formulation in velocity-pressure (and temperature in your case).
Very thanks sir! Yes, the results are wrong. I am not aware of the stability condition. Without penalty method, I am not getting convergence. What should I look into?
The inf-sup condition of Babuska-Brezzi is very classical, see for example
see also “the system of Stokes for fluids” in FF documentation p.69
You have to use a couple of spaces for velocity and pressure satisfying the inf-sup condition. You can take for example P2 for velocity and P1 for pressure (Taylor-Hood choice). This gives
boussinesq.edp (3.0 KB)