Hello to everybody,
I am wondering why the following simple code fails to set the homogeneous Dirichlet boundary condition to u
in P1dc
macro dn(u) (N.x*dx(u)+N.y*dy(u) ) // def the normal derivative
int Nn=8;
mesh Th = square(Nn,Nn);
fespace Vh(Th,P1dc); // Discontinous P1 finite element
Vh u,v;
func fh =-2.0*(pi^2)*sin(pi*x)*sin(pi*y); // RHS
solve testondc(u,v)=
int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))
+ intalledges(Th)((jump(v)*mean(dn(u))-jump(u)*mean(dn(v)))/nTonEdge)
- int2d (Th)(fh*v)
+on(1,2,3,4,u=0)
;
real testint=int1d(Th)(abs(u));
cout << "testint = " << testint << endl;
The result is
testint = 4.22009
Indeed setting the +on(1,2,3,4,u=0)
or not setting it makes no difference.