aparna
#1
How we can write function space for tensor valued function ?

how we can write exact solution if it is a vector ?

func f = [-2*pi^3*cos(pi*y)**sin(pi*y)(2*cos(2*pi*x) - 1), 2*pi^3*sin(pi*x)*cos(pi*x)*(2*cos(2*pi*y) - 1)];

This is correct?

How we can calculate error in L2 norm if u is a vector ?

please explain with an example

Let `Th`

a mesh, so

```
fespace Wh(Th,[P1,P1]);// is vectoriel Finite Space with 2 componante
Wh [u1,u2]=[x,sin(y)]; //. Interpole of function x,y -> [x,sin(y)]
// v1, v2 overdose fo-unctuion
réal errl2 = sqrt(int2d(Th)( (u1-v1)^2 + (u2-v2)^2));
```

aparna
#3
Thankyou for your reply

Can you tell how we define function space for tensor valued function?

Sorry only vector valued, so to do tensor you have to use vector