Hi,
I am trying to solve this resolvent formulation
I have (iw-L) ready from matrix transformation from https://github.com/FreeFem/FreeFem-sources/blob/develop/examples/hpddm/navier-stokes-2d-SLEPc-complex.edp. but I don’t know how to get J’ J to solve the minimum eigenvalues, where J’ is the complex conjugate. Can someone help me with that.
Thanks
======================================================================
varf vJ([u1, u2, p], [v1, v2, q]) = int2d(Th)(
(UgradV(uc, u) + UgradV(u, uc))’ * [v1, v2]
+ nut * (grad(u1)’ * grad(v1) +
grad(u2)’ * grad(v2))
- p * div(v)
- div(u) * q - omega * u1 * v1 - omega * u2 * v2)
+ on(1, 3, 4, 5, u1 = 0, u2 = 0);
{
matrix Loc = vJ(Wh, Wh);
J = Loc;
}
varf vM([u1, u2, p], [v1, v2, q]) = int2d(Th)(
(u1 * v1 + u2 * v2) * wu1) ;
matrix Loc = vM(Wh, Wh);
Mat M(J, Loc, clean = true);
int nev = 1;
complex[int] val(nev); // array to store eigenvalues
Wh[int] def(vec)(nev); // array to store eigenvectors
complex s = 0;
string params = "-eps_tol 1.0e-11 -eps_nev " + nev + " " +
"-eps_type krylovschur -st_type sinvert " +
“-eps_target " + real(s) + “+” + imag(s) + “i”+
" -eps_smallest_magnitude”;
int k = EPSSolve(J, M, vectors = vec, values = val, sparams = params);
===============================================================