
PHYSICAL REVIEW E 108, 055307 (2023)

General wetting energy boundary condition in a fully explicit nonideal fluids solver
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We present an explicit finite-difference method to simulate the nonideal multiphase fluid flow. The local
density and momentum transport are modeled by the Navier-Stokes equations and the pressure is computed
by the van der Waals equation of the state. The static droplet and the dynamics of liquid-vapor separation
simulations are performed as validations of this numerical scheme. In particular, to maintain the thermodynamic
consistency, we propose a general wetting energy boundary condition at the contact line between fluids and the
solid boundary. We conduct a series of comparisons between the current boundary condition and the constant
contact angle boundary condition as well as the stress-balanced boundary condition. This boundary condition
alleviates the instability induced by the constant contact angle boundary condition at θ ≈ 0 and θ ≈ π . Using
this boundary condition, the equilibrium contact angle is correctly recovered and the contact line dynamics
are consistent with the simulation by applying a stress-balanced boundary condition. Nevertheless, unlike the
stress-balanced boundary condition for which we need to further introduce the interface thickness parameter, the
current boundary condition implicitly incorporates the interface thickness information into the wetting energy.
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I. INTRODUCTION

Fluids spreading on solids are practical multiphase sys-
tems in the real world [1]. Industrial applications of solid
wetting research can be found in 3D printing [2], nucleate
boiling [3,4], and surface material construction [5,6]. Numer-
ical simulations on the wetting problem are made extremely
difficult or impossible by the existence of a very wide range
from macroscopic scales to nanometric scales [7–10]. When
it comes to models such as level-set and volume of fluid that
treat the interface between two fluids as a sharp interface,
the no-slip boundary condition contradicts the actual behavior
observed in droplet spreading [10]. To address the limitation
of those methods on the moving contact line, researchers
have implemented explicit Navier-slip or implicit numerical
slip boundary conditions [11–13]. Nevertheless, the bound-
ary conditions associated with the sharp interface method
will introduce nonphysical dynamics and prove ineffective
in handling small or large contact angles. Hence, it is worth
considering the diffuse interface method, a thermodynami-
cally consistent mathematical model for multiphase systems,
to effectively simulate the dynamics of contact lines [14–19].
The diffuse interface method introduces energy dissipation,
enabling the modeling of droplet spreading even with the
no-slip or small slip length boundary condition [15,16,20]. In
the vicinity of a diffused contact line, the bulk free energy and
the surface energy determine the contact line profile as well
as the fluid flow [14,21–23]. Moreover, the boundary condi-
tion within the diffuse interface method can be described as
the wetting energy to ensure the thermodynamic consistency
[4,15–17,24,25]. By employing the diffuse interface method,
it becomes possible to accurately simulate contact angles,
regardless of whether they are small or large in magnitude.

A well-known classical diffuse interface method is derived
from the van der Waals (VDW) equation of state (EOS) for

a single species, (p + aρ2)(1/ρ − b) = RT , where p rep-
resents the pressure, ρ represents the density, a and b are
modification parameters of the molecular interaction and the
molecular volume, respectively [26–28]. Under the pressure
and energy-driven mechanism, the VDW method is able to
separate the single species into two phases, one with higher
density, and the other one with lower density. Compared to
the Cahn-Hilliard (C-H) method, the VDW has some different
characteristics to be noted. First, the VDW method describes
the single species phase change where the interface is indi-
cated by the local density ρ, while the C-H method describes
the physical situation of a binary system of two essentially im-
miscible species and the interface profile is normally steeper
than the VDW method. In addition, in the VDW model, the
bulk energy density is computed by the entropy and molecular
interaction which can be represented by the equation ρ f0 =
−ρRT ln (1/ρ − b) − aρ2, where ρ f0 denotes the Helmholtz
free energy per unit volume. In contrast, the bulk free-energy
density adopted in the C-H is a double-well fourth-order
polynomial ρ f0 = β(ρ − ρl )2(ρ − ρg)2, where β denotes the
constant bulk energy coefficient and ρl , ρg are saturated liquid
and gas densities. One of the benefits of using the C-H type
energy form is it allows us to accurately represent the flat
interface profile at equilibrium using a hyperbolic tangent
function. Additionally, the C-H energy form enables us to
explicitly determine the interface thickness and the surface
tension [29,30]. However, the inclusion of a fourth-order par-
tial differential equation greatly amplifies the intricacy of the
problem, thereby intensifying the difficulty of numerically
simulating the C-H equation. Conversely, the VDW method
offers a viable diffuse interface approach that is not only
comparatively efficient but also valid.

Over the past few decades, extensive research has been
conducted to numerically investigate the diffuse interface
model of single-species multiphase systems [31–34], and
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various boundary condition methods have been employed in
the context of the diffuse interface model [15,16,35,36]. The
stress-balanced boundary condition, as proposed in Ref. [35],
takes into account a smooth variation of surface tension at the
diffused interface along the solid boundary. Moreover, from
a thermodynamic perspective, the energy-consistent bound-
ary condition can be applied in the diffuse interface method
[24,33,37–39]. It establishes a connection between the bulk
free energy and the wetting energy at the boundary, en-
suring a uniform interface thickness as the system reaches
thermodynamic equilibrium. The above-mentioned boundary
conditions are based on the C-H-type bulk free-energy for-
mulation. In this case, the wetting energy and the surface
tension can be evaluated without the difficulty to compute the
integral operation. However, as for the VDW energy form, the
value of the interface thickness and the surface tension is not
explicit. To obtain the surface tension, we need to further nu-
merically compute the integral along the surface, which makes
it challenging to apply the mentioned boundary conditions.
In recent years, a constant contact angle boundary condition
[29,40] and chemical potential based boundary condition have
been employed for the VDW single species model [41,42]. As
we shall see, the constant contact angle boundary condition
induces an instability at equilibrium contact angles θeq ≈ 0 or
θeq ≈ π . In addition, the boundary condition used in Ref. [34]
is applied to the pseudopotential lattice Boltzmann method.
In this approach, the exact determination of the contact angle
requires several free parameters, which adds complexity when
utilizing other simulation methods.

In this paper, as in the energy-consistent boundary con-
dition used in the C-H model, we provide a general energy-
consistent boundary condition for the VDW single species
multiphase model [20,24,33,37]. The boundary condition en-
sures energy consistency and allows for a uniform interface
profile as the equilibrium contact angle is approached. To
solve the Navier-Stokes equations, which incorporate a Ko-
rteweg stress form to model the surface effect, we employ a
fully explicit finite-difference method [31,43,44]. This finite
difference scheme enables easy implementation of adap-
tive mesh refinement technology, which further enhances the
computational efficiency of our approach. We perform a com-
parison of various boundary condition methods and present
the wetting energy for different equilibrium contact angles
and interface thickness parameters. Furthermore, we validate
our numerical scheme by showcasing two benchmark prob-
lems: A single static droplet and the dynamics of liquid-vapor
separation. The energy evolution for Laplace numbers La =
[10, 1000] is shown for a single static droplet and the aver-
age domain length evolution of the dynamics of liquid-vapor
separation is provided.

II. METHODOLOGY

In this section, we provide an introduction to the mathe-
matical model utilized in this paper. We begin by presenting
the governing equations and the thermodynamic energy of the
system. With a focus on the energy aspect, we derive the
wetting energy and proceed to compare different boundary
condition methods based on their profiles while simulating a
simple one-dimensional (1D) equilibrium surface.

A. Governing equations

The governing equations employed in our paper consist of
the compressible Navier-Stokes equations, incorporating the
Korteweg stress surface tension force, along with the EOS
[26]. Those formulations can be expressed as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = ∇ · (σv + σs − pI), (2)

p = ρRT

(
1

1 − bρ
− aρ

RT

)
. (3)

Equations (1) and (2) are the continuity equation and mo-
mentum equations. Here, the operator ⊗ represents the tensor
product operation. Equation (3) stands for the VDW EOS
from which we can obtain the pressure and close this nonideal
gas system. In Eq. (1), ρ denotes the local density of the liquid
or gas phase, and u is the velocity vector. In Eq. (2), pI is the
pressure tensor, where I is the identity matrix,

σv = η
[
(∇u + ∇T u) − 2

3 (∇ · u)I
]

(4)

represents the viscous stress tensor, and

σs = λ
[(

1
2 |∇ρ|2 + ρ∇2ρ

)
I − ∇ρ ⊗ ∇ρ

]
(5)

is the surface stress tensor. Within these equations, η is the
local viscosity, while λ corresponds to the surface energy co-
efficient. It should be noted that the thermodynamic pressure
denoted by p can be determined from Eq. (3), where R denotes
the universal gas constant, T is defined as the temperature,
and a, b are two gas constants that signify the intermolecu-
lar attraction and the volume modification ratio, respectively.
Normally, we can rearrange Eq. (3) in a dimensionless form

p∗ = − 8ρ∗T ∗

3 − ρ∗ − 3ρ∗2, (6)

where p∗ = p/pc, ρ∗ = ρ/ρc, and T ∗ = T/Tc are the dimen-
sionless forms of pressure, density, and temperature. In our
current paper, we set pc = 3

8ρcRTc, ρc = 1
3b , and Tc = 8a

27Rb as
critical pressure, density, and temperature. Therefore, when
we fix ρc = 1 with dimension ml−3 and pc = 1 with dimen-
sion ml−1t−2, the parameters a and b can be obtained as a = 3
with dimension m−1l5t−2, and b = 1

3 with dimension m−1l3,
where m, l , and t represents the mass unit, length unit, and
time unit respectively.

An expression for the energy associated with the pressure
term can be expressed as follows [31]:

p = ρ2 ∂ f0

∂ρ
, (7)

where the Helmholtz free energy per unit volume is expressed
as ρ f0. The dimensionless formula f ∗

0 = ρc f0/pc is given by
[45,46]

f ∗
0 = −8

3
T ∗ ln

(
1

ρ∗ − 1

3

)
− 3ρ∗ − μ∗, (8)

where μ∗ denotes the dimensionless bulk chemical potential
[47], which is a universal constant value in both the liquid and
gas regions. The bulk chemical potential can be determined
through the Maxwell construction of the pressure profile or
the common tangent construction of the free energy [48].
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B. Wetting energy model

The energy derivation presented in Ref. [24] establishes a
connection between the stress form and potential form surface
tension force formulations. In addition, when there is a solid
boundary in simulation, a wetting energy, and a constraint
function were introduced to close the system. As outlined in
Refs. [20,33,36,49], we derive the boundary condition for the
VDW model from an energy perspective. To incorporate the
surface effect, we introduce a mixed energy density formula-
tion, where the surface energy per unit volume is expressed as
follows:

es = λ

2
|∇ρ|2, (9)

and the mixed energy per unit volume is

emix = ρ f0 + es. (10)

In this expression, we also consider the kinetic energy per unit
volume ρek = 1

2ρ|u|2 and the wetting energy per unit area ew.
The total energy of the system can be expressed in integral
form as follows:

E =
∫




(emix + ρek ) dx +
∫

∂


ew ds. (11)

Considering a constant temperature, viscous dissipation is
the only dissipation of the energy. The evolution of the total
energy E is then

∂E

∂t
=

∫



(
∂emix

∂t
+ ∂ρek

∂t

)
dx +

∫
∂


∂ew

∂t
ds

=
∫




u · ∇ · σv dx. (12)

In this equation, 
 represents the fluid-dominated region,
while ∂
 corresponds to the solid boundary. Through variable
substitution and integration by parts, Eq. (12) can be rear-
ranged as follows:∫




[(
∂ρ f0

∂ρ
+ λ∇ρ · ∇

)
∂ρ

∂t
+ ∂ρek

∂t

]
dx +

∫
∂


∂ew

∂t
ds

=
∫




(
μmix

∂ρ

∂t
+∂ρek

∂t

)
dx+

∫
∂


(
λ∂nρ + ∂ew

∂ρ

)
∂ρ

∂t
ds,

where μmix = δemix/δρ represents the mixed chemical poten-
tial, which is obtained by taking the functional derivative of
the mixed energy. To ensure nondissipation at the boundary,
we obtain the following expression:

λ∂nρ + ∂ew

∂ρ
= 0, (13)

where ∂nρ denotes the wall direction derivative of the density
and e′

w = ∂ew/∂ρ is referred to as the wetting potential. The
potential surface force formulation can be derived from the
volume integral part. The consistency between the potential
form and the stress-form formulations can be demonstrated
through the inclusion of an additional stress term:

∇ · (σs − pI) = −ρ∇μmix + ∇ · σρ, (14)

where the additional stress term σρ takes the form

σρ = λ(|∇ρ|2I − ∇ρ ⊗ ∇ρ). (15)

By utilizing the potential surface force formulation, the pres-
ence of spurious currents can be significantly reduced to a
level below the round-off limit [32,50].

For a 1D planar simulation with σρ = 0, in the equilibrium
state of the system, the mixed chemical potential must satisfy
the following condition:

μmix = ∂ρ f0

∂ρ
− λ

d2ρ

dx2
= 0. (16)

When we multiply Eq. (16) by dρ/dx and integrate it, the
following equation can be obtained:

λ

2

(
dρ

dx

)2

=
∫

∂ρ f0

∂x
dx. (17)

The first derivative of the density can then be derived as∣∣∣∣dρ

dx

∣∣∣∣ =
√

2ρ f0

λ
. (18)

To extend Eq. (18) to multidimensional problems, we make
the approximation |∇ρ| ≈ √

2ρ f0/λ. Considering the con-
straint given by Eq. (13), we can derive an energy-consistent
wetting energy per unit area as follows:

ew1 = cos θeq

∫ ρ

ρgs

√
2λρ f0 dρ + C. (19)

Here, C represents a constant parameter. However, in the
simulation, this constant does not affect the evolution of the
contact line, so we can set C = 0. In this case, the wetting
potential ew1 is characterized by two saturation densities, and
these values align with the equilibrium density in the liquid
and gas phases [33]. Therefore, we have ρls = ρl , ρgs = ρg.

In addition to the aforementioned ew1 formulation, there
are other approaches utilized to constrain the dynamics of the
contact line. One such method is the constant contact angle
boundary condition, which enforces the dynamic contact an-
gle to be equal to the equilibrium contact angle. The energy
formulation for this condition is expressed as follows [29,40]:

ew2 = λ cot θeq

∫ ρ

ρgs

∂ρ

∂x
dρ + C. (20)

Another stress-balanced energy formulation [35]

ew3 = −σ

2
cos θeq sin

πφ

2
, (21)

where φ = 2ρ−ρl −ρg

ρl −ρg
is known as the order parameter changing

from φ = [−1, 1], and σ is the surface tension between two
fluids. As well as a thermodynamic consistent formulation
based on the pseudopotential, the lattice Boltzmann method
can be shown as [34,42]

ew4 = −KEOSKINT
γ (ρl − ρg)

2ζ
tanh ζφ, (22)

where KEOS, KINT are scaling factors to adjust the interface
thickness of the phase field method, and γ and ζ are indepen-
dent parameters that determine the contact angle.

Among the various wetting energy formulations, ew2 main-
tains a constant contact angle throughout the evolution of the
contact line. However, this approach may violate thermody-
namic principles. Particularly, when the equilibrium contact
angle θeq is close to 0 or 2π , the simulation system becomes
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Comparison of the wetting potential: e′
w1, e′

w2, and e′
w3 along the horizontal direction with initial Cn = [0.01 − 0.04] for [(a)–(c)]

with θeq = π

12 , and [(d)–(f)] with θeq = π

4 .

highly unstable. On the other hand, the formulation of ew3

is derived by considering the stress balance and minimizing
the free energy, thereby ensuring the preservation of correct
thermodynamics [35,51]. To establish the exact relationship
between σ and λ, it is necessary to further determine the
profile of the interface, as shown by Chen et al. [29]. This
relationship plays a crucial role in ensuring the accuracy of
the contact line dynamics. In Fig. 1, we present a comparison
of the wetting potential values along the interface for different
Cahn numbers, denoted as Cn = δ/L, where δ represents the
initial interface thickness and L is the length of the system.
Specifically, in Figs. 1(a)–1(c), we consider an equilibrium
contact angle of θeq = π/12 for varying values of Cn. It can
be observed that, due to the large value of cot θeq in the case
of a small contact angle, the wetting potential of the energy
ew2 exhibits significantly higher values compared to the other
two methods. Furthermore, when we increase the equilibrium

contact angle to θeq = π/4, as depicted in Figs. 1(c)–1(e), the
wetting energy formulation ew3 exhibits varying peak values
for different values of Cn. It is worth noting that the density
profile is represented by a hyperbolic tangent function in each
case. Consequently, the relationship between σ and λ is pre-
cisely determined as σ ≈ 2

√
2

3
λ
δ

when the value of δ is known.
The formulation of ew4 is heavily influenced by the pa-

rameter selection and is more suitable for specific numerical
methods. In recent studies, an implicit chemical potential
boundary condition has been proposed to address the contact
line problem [41,52]. Due to the fully implicit nature of the
method, it becomes challenging to accurately determine the
contact angle precisely from the provided chemical potential
value and temperature.

In our energy boundary condition, as described in Eq. (19),
the computation of ew1 through integration is required. How-
ever, in a realistic simulation, this value is not necessary.
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Therefore, this approach can be utilized as a general boundary
condition that effectively preserves thermodynamic consis-
tency. Additionally, the information regarding the interface
thickness δ in ew1 is implicitly incorporated into the bulk
free energy, and all the essential parameters are computed
locally. This approach successfully addresses the instability
issues encountered in previous methods.

There are linear, quadratic, and cubic wetting energy for-
mulations based on the C-H model. However, similar to the
formulation ew3, these formulations require prior relations to
evaluate the interface thickness and determine the density
profile on the boundary. Therefore, we have not considered
these formulations in the current paper. For a detailed analysis
of these formulations, refer to Refs. [33,38].

III. NUMERICAL SCHEME

To solve the governing equations presented in the previous
section, we employ the two-step MacCormack methodology
[31,43]. To begin, we define a vector f consisting of the
density ρ and momentum ρu. Then, we proceed to reconstruct
the governing equations using this vector Eqs. (1) and (2):

f =
(

ρ

ρu

)
. (23)

Equations (1) and (2) can now be expressed as the functions
of f ,

∂t f + ∇ · F(ρ,∇ρ,∇2ρ) = 0, (24)

where F can be further expressed as

F =
(

ρu
ρu ⊗ u + pI − σs − σv

)
. (25)

As shown in Ref. [31], Eq. (24) can be solved by a pre-
condition and correction finite-difference method. The time
derivative is dealt with in a fully explicit manner:

f̄ = fn − �t∇bck · Fn, (26)

fn+1 = 1

2
(fn + f̄ ) − �t

2
∇fwd · F̄. (27)

Here, ∇fwd stands for forward finite difference, ∇bck is the
backward finite difference, and ∇ctr represents the central
finite difference.

In addition, the derivative computation appearing
in F can be computed by Fn(ρn,∇fwdρn,∇2

ctrρ
n), and

F̄(ρ̄,∇bckρ̄,∇2
ctrρ̄ ), respectively.

Our simulation is implemented using the free code plat-
form called Basilisk, which is a common tools language for
the Octree structure utilizing adaptive mesh refinement meth-
ods [53,54]. Given that our method relies on finite differences
and is fully explicit, the strategy for adaptive mesh refinement
is straightforward. The complete code is now accessible at
Ref. [55].

IV. RESULTS

In this paper, the VDW model is utilized to simulate phase
transformations for an isothermal single-species multiphase
system. The interface between the two phases undergoes
changes from the initial shape to the equilibrium shape, result-
ing in fluid flow. Our simulations aim to assess the stability,

FIG. 2. Equilibrium density values coexisting at different tem-
peratures. The dashed line represents the analytic solutions derived
from the Maxwell construction. The simulation results, indicated by
square symbols, show the densities of the lighter gas (ρg) and the
higher liquid (ρl ) under various temperature conditions.

energy oscillation, and morphology changes that occur during
this phase-transition process.

A. Single droplet simulation

To validate the numerical method, we simulate the coexist-
ing saturated density values at a fixed temperature and finish
the phase diagram. The simulation begins by initializing a sin-
gle droplet with a radius of R = 0.2L0 inside a square gas tank
with perimeter L0, and it continues until the system reaches an
equilibrium state. The initial density profile is represented by
a hyperbolic tangent function,

ρ(x, 0) = ρl + ρg

2
− ρl − ρg

2
tanh

|x − x0| − R

δ
, (28)

where the droplet density is ρl and the vapor density is ρg.
The simulations are conducted with a fixed La = 10, where
La = λρcR/η2 denotes the Laplace number. We fix ρc = 1,
λ = 0.001, and obtain the viscosity η from La. In addition,
|x − x0| represents the distance between the local position
and the droplet interface, and δ denotes the initial interface
thickness.

To obtain a near-equilibrium system, we run the simula-
tion until the kinetic energy KE < 1 × 10−10. In Fig. 2, we
compare the simulation results of the density values with the
analytic solutions obtained from the Maxwell construction.
Our numerical scheme accurately captures the results, which
are in good agreement with the theoretical solutions.

We proceed with the simulation of a single droplet in a
square domain under a constant temperature T ∗ = 0.95 with
periodic boundaries. Based on the results shown in Fig. 2, the
approximate saturated density of the liquid phase is ρl ≈ 1.46,
and that of the gas phase is ρg ≈ 0.58. In this test, we do
not consider the viscosity ratio. It is important to note that
the exact density profile in a static solution is more complex,
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(a) (b)

FIG. 3. Logarithmic evolution of (a) kinetic energy Ek and (b) surface energy Es over the domain for the single static droplet simulation.

but it can be qualitatively represented by a hyperbolic tangent
function as given in Eq. (28). Consequently, the presence
of different initial density values compared to the saturated
density values introduces oscillations in the simulation. The
initial density distribution, along with the surface tension
stress, drives the droplet towards its equilibrium shape, while
the pressure helps separate the saturated density profile si-
multaneously. In an ideal scenario, with sufficient evolution
time, we would expect a constant surface energy Es = ∫



es

and zero kinetic energy Ek = 0. However, due to unbalanced
numerical schemes and the choice of the surface force formu-
lation [32], spurious currents can occur.

In this test, we characterize the system using La. In the
same manner as we introduced for the previous test, the sur-
face tension parameter is fixed as λ = 0.001, and the domain
size is set to L0 = 2. Therefore, the initial droplet radius is
R = 0.2L0 = 0.4, and the viscosity can be computed by La.
With La � 1, we expect a significant surface effect that in-
duces pronounced spurious currents when the system reaches
equilibrium [56]. The logarithmic evolution of kinetic energy
and surface energy is presented in Fig. 3. We vary La from
10 to 1000. As the viscous force dissipates the system’s en-
ergy and balances the oscillations caused by capillary waves,
reducing La leads to a rapid decrease in kinetic energy. The
viscous dissipation gradually consumes the energy associated
with the droplet shape, causing the kinetic energy to converge
to a small, constant value. In our simulations, the final kinetic
energy, attributed to spurious currents, does not reach zero.
However, the surface energy converges to the same value
for different La values, indicating that the surface effect ac-
celerates the system’s attainment of the equilibrium profile.
When La � 1000, oscillations in the energies are observed. In
such high-temperature systems, the significant surface effect
induces capillary waves around the phase interface. The im-
balance between surface tension and thermodynamic pressure,
combined with the explicit numerical scheme, leads to the

generation of spurious currents, preventing the system from
reaching zero kinetic energy.

It should be noted that in various numerical methods when
different forms of surface tension forces are used, the strategy
for solving the problem of spurious currents varies [57]. In
the phase-field method, spurious currents can be mitigated
by employing the potential form of surface tension force to
maintain energy balance [24]. Furthermore, the choice of a
balanced finite difference scheme is crucial. An isotropic finite
difference method is typically employed to address spurious
currents [32]. It is well-known that the stress form of sur-
face tension force can induce more spurious currents [57,58].
However, in this paper, to maintain a momentum-conserving
formulation, we continue to use the Korteweg form of surface
tension force. We intend to investigate various forms of sur-
face tension forces and different finite-difference methods in
future studies.

B. Dynamics of liquid-vapor separation

In this section, we explore the applicability of the VDW
model to the dynamics of liquid-vapor separation, aiming to
assess its performance in a complex morphology-changing
problem. Additionally, we have incorporated adaptive mesh
refinement into the simulation to enhance efficiency. When
a single species is subjected to a temperature close to the
critical temperature and possesses a random density profile,
the pressure and surface stress act as driving forces, lead-
ing the mixture to undergo phase separation. This results in
coarsening dynamics and the formation of two distinct phases:
One with a higher density and the other with a lower density.
In the VDW model, the phase separation solely relies on the
equilibrium density corresponding to specific temperatures.
This enables the system to minimize the free energy during
its evolution.

As depicted in Fig. 4(a), we initiate the simulation by
introducing a single species with a random density fluctuation
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FIG. 4. Temporal evolution of the dynamics of liquid-vapor separation for t = [0, 16].

within a 2D square domain. The boundaries of the domain
are set as periodic conditions to ensure continuity. The initial
density profile is defined as follows:

ρ(x, 0) = ρc + 0.2ρc(rand), (29)

where the amplitude of random fluctuation is set to 0.2ρc. The
random number for generating the fluctuations is obtained
from the random seed rand = [−1, 1]. The phase separation
is characterized by the growth of the domain length scale,
defined as L = L2

0/χm, where L2
0 represents the area of the

square domain, and χm = 〈C2(1 − C)2〉 is the space average
quantity parameter associated with the concentration of the
gas phase, denoted as C = (ρ − ρg)/(ρl − ρg) [59]. In our
previous work, we utilized the explicit method to investi-
gate the dynamics of liquid-vapor separation under constant
temperature conditions [31]. When the system temperature
was set to T ∗ = 0.85, simulation results exhibited a growth
rate characterized by L ∼ (t − t0)0.7, which was close to but
slightly higher than the (t − t0)2/3 growth rate reported by
Miranda et al. [60]. In the present paper, we simulate the
dynamics of liquid-vapor separation under T ∗ = 0.95 with a
Laplace number of La = 0.04. In this example, the simula-
tions are performed with adaptive meshes using the feature of
Basilisk [53]. The smallest (dimensionless) cell size, �x, used
is 0.0039 in order to fully resolve the liquid-vapor interface.
The results presented here are obtained by averaging over five
runs with different random initial density configurations.

The evolution of the mixture’s morphology at different
time steps is shown in Fig. 4. Over time, the complexity of
the mixture gradually diminishes, and the influence of surface
tension becomes prominent, resulting in the formation of cir-
cular liquid droplets in the later stages. In Fig. 5, we compare
the simulation results of the domain length scale L evolution
when La = 0.04 with the corresponding theoretical solutions
depicted by the red dashed curve. It can be observed that our
simulation results exhibit close agreement with the theoretical
prediction L ∼ (t − t0)2/3.

C. Equilibrium contact angle and energy evolution

In the previous section, we compared various boundary
condition methods based on their profiles along the interface
for the 1D planar case. Now, we employ different boundary
conditions to model the equilibrium contact angle and assess
the energy evolution of the contact angle simulation.

For this test, we start with a liquid droplet of radius R =
0.2L0, where the density is set to ρ = ρl , located on a solid
boundary. The region to the left of the droplet is filled with
gas, with a density of ρ = ρg. The density profile function and
the velocity can be defined as follows:

ρ(x, 0) = ρl + ρg

2
− ρl − ρg

2
tanh

|x − x0| − R

δ
, (30)

u(x, 0) = 0. (31)
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FIG. 5. Evolution of domain length L versus time (t − t0 )2/3.
The red dashed line represents the reference curve for theoretical
solutions.

Here, |x − x0| represents the distance to the interface of the
liquid droplet and x0 denotes the center position of the droplet.
The temperature for this simulation is fixed at T ∗ = 0.95.
The viscosity η and surface energy coefficient λ are cho-
sen to satisfy La = 4 for all simulations. To ensure stable
simulations, the time interval �t needs to satisfy η�t

�x2 � 0.1.
Additionally, the Courant-Friedrichs-Lewy (CFL) condition
is imposed with CFL = |umax|�t

�x � 0.1. Since the equilibrium
interface thickness, δeq, is unknown in the ew3 formulation, we
set δeq = 0.3 and approximate σ as ≈3.143λ.

The equilibrium contact angle for each simulation is com-
puted using the method described in Ref, [44]. The simulation
results are evaluated when the kinetic energy reaches a con-
stant value, typically when t � 1. In the provided figures, the
interface position is defined as ρ = ρc.

Figure 6 illustrates the evolution of the normal strain for the
simulation of θeq = π/6 at various time points. In this paper,
we employ adaptive mesh refinement techniques, where the
resolution of the mesh is determined by the density distri-
bution. Notably, the grids demonstrate a clear refinement in
the contact line region as the droplet spreads over the solid
surface. Figure 7(a) compares three different boundary con-
ditions with the corresponding analytic solution, indicated by
the black dashed line. The equilibrium shapes of the droplets
residing on solids with different contact angles are shown in
Fig. 7(b). Upon comparison, it can be observed that when
the equilibrium contact angle θeq is set to π/2, the results
from the three methods align well with each other. Simi-
larly, when the equilibrium contact angle approaches π/2,
the simulation results of the form ew1 exhibit good agreement
with the reference curve. However, when θeq is set to 2π/3
and π/6, the results from form ew2 deviate from the analytic
solutions. Additionally, the accuracy of the results from form
ew3 is lower compared to those from ew1 or the analytic so-
lutions. By considering these comparisons, we can conclude
that the form ew1 consistently provides accurate results across

a wider range of contact angles compared to the other two
formulations.

It is important to evaluate the energy evolution of the
contact line moving until the system reaches the equilibrium
state, as it provides insights into the contact line dynamics of
the system [34]. Figure 8 illustrates the evolution of kinetic
energy during the simulation. Once the droplet achieves its
equilibrium shape, it stops evolving, and the kinetic energy
initially increases and then gradually decreases toward zero.
For the energy form ew1, in the late stages of the simula-
tion, the kinetic energy of each case converges to a very
small value, approximately Ek ∼ 10−10. To further analyze
the differences in kinetic energy evolution, Fig. 9 compares
the kinetic energy profiles for the energy forms ew1 and
ew2. It is worth noting that for contact angles θeq > 5π/6,
the simulation process becomes highly unstable when using
form ew2. Hence, the results for an even larger contact angle,
θeq = 35π/36, are not compared. The comparison in Fig. 9(b)
clearly demonstrates that the kinetic energy evolution differs
significantly between the two boundary conditions. This indi-
cates that the contact line dynamics associated with these two
methods during the simulation are also distinct. Moreover,
when using the ew1 formulation for the boundary, the system
reaches the equilibrium state more rapidly. In summary, the
analysis of the kinetic energy evolution supports the superi-
ority of the ew1 formulation, as it leads to faster convergence
to the equilibrium state and provides more stable contact line
dynamics compared to the ew2 formulation.

We proceed to compare the energy forms ew1 and ew3 in
Fig. 10. To maintain consistency between the two boundary
conditions, the interface thickness δeq = 0.164 is obtained
from the equilibrium state of the simulation using ew1 as the
wetting energy. The comparison in Fig. 10(b) reveals that
the kinetic energy evolution of both cases is qualitatively
consistent, and even the capillary-induced oscillation exhibits
similar characteristics. It is worth noting that the idea behind
form ew3 stems from the concept of stress balance between the
gas phase and liquid phase at the interface region [35,51,61–
63]. The surface tension difference �σ between the solid-
gas and solid-liquid interfaces remains continuous along the
boundary, and the dynamics of the moving contact line sim-
ulated using this method have been widely employed and
compared with molecular dynamics and experimental studies
[35,61,62]. Consequently, from a kinetic energy and dynamics
standpoint, similar outcomes can be achieved whether we
utilize ew1 or ew3 as the wetting energy. This suggests that both
formulations can capture the essential features of the contact
line dynamics and yield comparable results in kinetic energy
and capillary-driven oscillations.

V. CONCLUDING REMARKS

In this paper, we investigated an explicit finite difference
method for solving the VDW multiphase flow. Based on the
MacCormack methodology, the numerical scheme provided
qualitative simulation results for single static droplets and the
dynamics of liquid-vapor separation. We proposed a general
energy-based approach to address the contact line problem by
relating the wetting energy to bulk free energy and surface
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FIG. 6. Droplet profiles (left panel) and the trace of the strain tensor of the contact line simulation with equilibrium contact angle θeq = π

6
at t = 1, 3, 7. The black lattices are the grids. The resolution of the simulation is dynamically tuned between fine and coarse levels based on
the density profile. The white lines represent the isocontour for values of density ρ at 0.8 and 1.2.

energy, and compared them with existing boundary condition
methods.

In the simulation tests, we evaluated the energy evolu-
tion and spurious currents of single static droplets under
different Laplace numbers (La). As La was decreased to
approximately 1, we observed a more stable equilibrium
system with reduced intensity of spurious currents. We vali-

dated our method by analyzing the growth of domain length
during the liquid-vapor separation process, and our results
were in good agreement with the predicted solution L =
(t − t0)2/3. Using the general energy-based boundary con-
dition, we achieved highly consistent equilibrium contact
angles with the predicted analytic solution. However, the
other two existing methods failed to provide qualitative
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(a) (b)

FIG. 7. (a) Comparison between contact angle simulation and the analytic solution θeq for θeq = [ π

3 − 5π

6 ] with different wetting potentials.
(b) Simulation comparison between different wetting potential forms.

results due to large wetting potential and uncertain interface
thickness.

Furthermore, the kinetic energy of the simulation for the
equilibrium shape of the sessile droplet converged to Ek ∼
10−10, which is at a similar level as the simulation of spurious
currents in the single static droplet. Additionally, we observed
consistent dynamics between the energy-consistent boundary
condition and the stress balance boundary condition when the
same interface thickness was employed in both approaches.

Overall, our paper demonstrated the effectiveness of the
explicit finite difference method for VDW multiphase flow

and provided valuable insights into the energy-based approach
for modeling contact line phenomena.
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(a) (b)

FIG. 8. Kinetic energy evolution of θeq = [π/6 − 35π/36] for ew1 during (a) t = [40 − 200] and (b) t = [100 − 200].
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(a) (b)

FIG. 9. (a) Kinetic energy evolution of θeq = [π/6 − 2π/3] for ew2. (b) Comparison of kinetic energy evolution between ew1 and ew2 for
θeq = [π/6 − 2π/3] during t = [20 − 100].

APPENDIX

1. Potential form surface tension force

We here establish the distinction between the Korteweg
stress-based surface force and the potential-based surface
force. We begin by examining the force terms of the momen-
tum equation, Eq. (2), excluding the contribution from viscous

dissipation:

∇ · (σs − pI) = ∇ · (λ[(
1
2 |∇ρ|2 + ρ∇2ρ

)
I

− ∇ρ ⊗ ∇ρ
] − pI

)
. (A1)

(a) (b)

FIG. 10. (a) Kinetic energy evolution of θeq = [π/6 − 35π/36] for ew3. (b) Comparison of kinetic energy evolution between ew1 and ew3

for θeq = [π/6 − 2π/3] during t = [80 − 100].
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(a) (b)

FIG. 11. (a) Comparison of kinetic energy evolution between ew1 and ew2 for θeq = [π/6 − 2π/3] during t = [20 − 100]. (b) Comparison
of kinetic energy evolution between ew1 and ew3 for θeq = [π/6 − 2π/3] during t = [60 − 100].

In this context, the pressure is determined by the EOS, which
can be obtained from the thermodynamic energy as p =
ρ2∂ f0/∂ρ, as explained in the main text. By substituting this
expression into Eq. (A1), we obtain the following result:

∇ · (σs − pI) = ∇
(

λ

2
|∇ρ|2 + λρ∇2ρ − ρ2 ∂ f0

∂ρ

)

− ∇ · (λ∇ρ ⊗ ∇ρ). (A2)

In addition, the flux term of the momentum equations can also
be represented by a potential form surface force [24]

−ρ∇μmix = −∇ρμmix + μmix∇ρ, (A3)

with mixed chemical potential μmix = ∂ (ρ f0)/∂ρ − λ∇2ρ.
Equation (A3) can be further simplified to

−ρ∇μmix = ∇
(

λρ∇2ρ − ρ2 ∂ f0

∂ρ

)
− λ∇2ρ∇ρ. (A4)

Finally, the additional stress term σρ can be evaluated by the
difference between Eq. (A2) and Eq. (A4),

∇ · σρ = ∇ · (σs − pI) + ρ∇μmix

= ∇ ·
(

λ

2
|∇ρ|2I − λ∇ρ ⊗ ∇ρ

)
+ λ∇2ρ∇ρ, (A5)

which can be simplified as

σρ = λ(|∇ρ|2I − ∇ρ ⊗ ∇ρ) + C. (A6)

The constant C is typically set to zero in practice, as only
the divergence of the stress term appears in the momentum
equation. The additional stress term is mostly implicitly incor-
porated into the pressure term. In the case of a 1D simulation,
this term simplifies to zero.

2. Effect of the initialization

To eliminate the effect of the initialization, we compare the
late-time kinetic energy evolution for three formulations based
on different initial setups. Instead of placing a full droplet on
the solid boundary, the droplet is placed on the solid with an
initial 90◦ contact angle, after which we suddenly apply the
boundary conditions.

As shown in Fig. 11(a), the kinetic energy of the pinned
contact angle boundary condition, ew2, is 10 ∼ 100 times
greater than the kinetic energy of the thermodynamic consis-
tent boundary condition, ew1. Meanwhile, we observe similar
evolution between ew1 and ew3 [see Fig. 11(b)]. These re-
sults are consistent with the different initializations shown in
Figs. 9 and 10.
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