Remark, on Stokes equation

Fréderic Hecht¹

March 15, 2023

Equation

The Stress of the fluid Stokes Equations Variational form of Stokes equations

Boundary condition

Dirichlet Boundary condition Basic Boundary condition Navier Boundary condition

Incompressible Navier-Stokes

Incompressible Navier-Stokes with Newton method's

The Stress of the fluid

Denote *u* the velocity field et *p* the pressure field Then the classical mechanical stress σ^* of the fluid :

$$\sigma^{*}(\boldsymbol{u},\boldsymbol{p}) = 2\mu \mathbb{D}(\boldsymbol{u}) - \boldsymbol{p} I_{d}, \qquad \mathbb{D}(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + {}^{t} \nabla \boldsymbol{u})$$
(1)

Or in math formulation

$$\boldsymbol{\sigma}^{\bullet}(\boldsymbol{u},\boldsymbol{p}) = \mu \nabla \boldsymbol{u} - \boldsymbol{p} \, \boldsymbol{I}_d \tag{2}$$

So σ is one of this two stress tensor,

Remark: if $\nabla . \boldsymbol{u} = 0$ then $\nabla . 2\mathbb{D}(\boldsymbol{u}) = \nabla . \nabla \boldsymbol{u} + \nabla .^{t} \nabla \boldsymbol{u} = \nabla . \nabla \boldsymbol{u} + \nabla \underbrace{\nabla . \boldsymbol{u}}_{=0} = \nabla . \nabla \boldsymbol{u}$

In Domain Ω of \mathbb{R}^d , find the velocity field \pmb{u} et the pressure field p solution of

$$\nabla \sigma(\boldsymbol{u}, \boldsymbol{p}) = \boldsymbol{f} \tag{3}$$
$$-\nabla \boldsymbol{u} = \boldsymbol{0} \tag{4}$$

+ Boundary condition are defined through the variational form Where f is the density of force.

Variational form of Stokes equations

In Domain Ω of \mathbb{R}^d , find the velocity field u et the pressure field pMechanical Variational form of Stokes equation

$$\forall \boldsymbol{v}, \boldsymbol{q}; \quad \int_{\Omega} 2\mu \mathbb{D}(\boldsymbol{u}) : \mathbb{D}(\boldsymbol{v}) - \boldsymbol{q} \nabla \boldsymbol{u} - \boldsymbol{p} \nabla \boldsymbol{v} = \int_{\Omega} \boldsymbol{f} \boldsymbol{v} + \int_{\Gamma} {}^{t} \boldsymbol{n} \boldsymbol{\sigma}^{\star}(\boldsymbol{u}, \boldsymbol{p}) \boldsymbol{v}$$

Mathematical Variational form of Stokes equation

$$\forall \boldsymbol{v}, \boldsymbol{q}; \quad \int_{\Omega} \mu \nabla \boldsymbol{u} : \nabla \boldsymbol{v} - \boldsymbol{q} \nabla \boldsymbol{u} - \boldsymbol{p} \nabla \boldsymbol{v} = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} + \int_{\Gamma} {}^{t} \boldsymbol{n} \boldsymbol{\sigma}^{\bullet}(\boldsymbol{u}, \boldsymbol{p}) \boldsymbol{v}$$

with Ok, but what is the difference, and remember ${}^t n \sigma^{\bullet}(u, p)$ are boundary density forces f_{Γ} .

Dirichlet Boundary condition

Now \boldsymbol{u} is know on $\Gamma = \partial \Omega$ equal to \boldsymbol{u}_{Γ} , so $\boldsymbol{v} = 0$, in this cas the variationnal formulation become

$$\forall \boldsymbol{v} \in (H_0^1)^d, q \in L^2; \quad \int_{\Omega} 2\mu \mathbb{D}(\boldsymbol{u}) : \mathbb{D}(\boldsymbol{v}) - q\nabla . \boldsymbol{u} - p\nabla . \boldsymbol{v} = \int_{\Omega} \boldsymbol{f} . \boldsymbol{v}$$

It is easy to see than p will be define though a constant, so problem is well pose in space $((H_0^1)^d, L_0^2)$ (see ...) where $L_0^2 = \{v \in L^2, \int v = 0\}$ this imply at discret level the linear system will be not invertible, but the problem is well pose so we can make a regularization by adding a small term $-\varepsilon pq$ to the variational form

$$\forall \boldsymbol{v} \in (H_0^1)^d, q \in L_0^2; \quad \int_{\Omega} 2\mu \mathbb{D}(\boldsymbol{u}) : \mathbb{D}(\boldsymbol{v}) - q\nabla \boldsymbol{.} \boldsymbol{u} - p\nabla \boldsymbol{.} \boldsymbol{v} - \varepsilon pq - = \int_{\Omega} \boldsymbol{f} \boldsymbol{.} \boldsymbol{v}$$

Warning we are in $(H_0^1)^d \times L_0^2$ not in $(H_0^1)^d \times L^2$. The difference is the following test function v = 0, q = 1 which imply $\int_{\Omega} \nabla \boldsymbol{u} + \varepsilon p = 0$, so $0 = 1/\varepsilon \int_{\Gamma} \boldsymbol{u} \cdot \boldsymbol{n} = -\int_{\Omega} p$, then $p \in L_0^2$ The regularize problem in $(H_0^1)^d$, $q \in L^2$ is: Find $\boldsymbol{u}^{\varepsilon} \in (H^1)^d$, $p^{\varepsilon} \in L^2$, with $u_{|\Gamma}^{\varepsilon} = u_{\Gamma}$ such than

$$\forall \boldsymbol{v} \in (H_0^1)^d, q \in L^2; \quad \int_{\Omega} 2\mu \mathbb{D}(\boldsymbol{u}^{\varepsilon}) : \mathbb{D}(\boldsymbol{v}) - q\nabla . \boldsymbol{u}^{\varepsilon} - p^{\varepsilon} \nabla . \boldsymbol{v} - \varepsilon p^{\varepsilon} q - = \int_{\Omega} \boldsymbol{f} . \boldsymbol{v}$$

and we have $||\boldsymbol{u}^{\varepsilon} - \boldsymbol{u}||_{H^1} + ||p^{\varepsilon} - p||_{L^2} \le C\varepsilon ||p||_{L^2}.$

Basic Boundary condition for Stokes equations

Remove or know the boundary term $\int_{\Gamma}^{t} \boldsymbol{n} \boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{v}$ First remark $\int_{\Gamma}^{t} \boldsymbol{n} \boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{v} = \int_{\Gamma}^{t} \boldsymbol{f}_{\Gamma} \boldsymbol{v}.$

Where \mathbf{f}_{Γ} is the boundary force density (in mechanical formulation). On the boundary the trick is to know ${}^{t}\mathbf{f}_{\Gamma}\mathbf{v}$ or to put " $\mathbf{v} = 0$ " on some component if is \mathbf{u} know on this component

So try, with FreeFem++ Execute Stokes-Pipe.edp

Execute Stokes-ext.edp

Navier Boundary condition of Stokes equations

 τ the tangent , **n** the normal, on Γ , g a given function, remember the boundary force $f_{\Gamma} = {}^{t} n \sigma(u, p)$.

$$\boldsymbol{u}.\boldsymbol{n} = \boldsymbol{0} \tag{5}$$

$$\mathbf{f}.\boldsymbol{\tau} = \beta \boldsymbol{u}.\boldsymbol{\tau} + \boldsymbol{g}.\boldsymbol{\tau} \tag{6}$$

This imply add in V.F. in RHS:

$$-\int_{\Gamma}\beta \boldsymbol{u}.\boldsymbol{\tau}\boldsymbol{v}.\boldsymbol{\tau}+\boldsymbol{v}.\boldsymbol{\tau}\boldsymbol{g}.\boldsymbol{\tau}=-\int_{\Gamma}\beta^{t}\boldsymbol{u}(\boldsymbol{\tau}^{t}\boldsymbol{\tau})\boldsymbol{v}+\boldsymbol{v}.\boldsymbol{\tau}\boldsymbol{g}.\boldsymbol{\tau}$$

Remark, if $n \neq e_i$, change u.n = 0 by penalisation we have

$$O = \frac{1}{\epsilon} u.\boldsymbol{n}; \quad \text{Add to V.F. in RHS} - \int_{\Gamma} \frac{1}{\epsilon} t \boldsymbol{u}(\boldsymbol{n} t \boldsymbol{n}) \boldsymbol{v}$$

Remark, Implementation of Dirichlet Boundary Conditions

Original problem is , Find $oldsymbol{U} = (oldsymbol{u}_{oldsymbol{i}}) \in \mathbb{R}^n$, such that

$$\begin{array}{ll} (AU &= B)_i & \text{Dof}.i \notin \Gamma_d \\ U_i &= G_i = (\Pi_h g)_i & \text{Dof}.i \in \Gamma_d \end{array}$$

$$(7)$$

where A is the matrices associated to the V.F., B the RHS of the VF without the Dirichlet Boundary Conditions.

Let us call tgv = 10^{30} a huge value (tres grand valeur), and $I_{\Gamma_d} = ((i \in \Gamma_d)\delta_{ij})$

$$A_{tgv} = A + tgv I_{\Gamma_d}, \qquad B_{tgv} = B + tgv I_{\Gamma_d} G$$

We solve $A_{tgv}U = B_{tgv}$, the approximation is in $O(10^{-30})$, it's better than the number of digits 16, so it's exact not to close to 0.

Execute Stokes-Pipe-Navier.edp Execute Stokes-ext-Navier.edp Execute Stokes-BC.edp

Zero Tangent velocity, and Neumann boundary condition

if $\boldsymbol{u}.\boldsymbol{\tau} = 0$ and at continuous level when $\nabla_{\boldsymbol{\tau}}.\boldsymbol{u} = 0$ and $0 = \nabla_{\boldsymbol{\cdot}}\boldsymbol{u} = \nabla_{\boldsymbol{\tau}}.\boldsymbol{u} + \partial_{n}\boldsymbol{u}_{n}$ so $\partial_{n}\boldsymbol{u}_{n} = 0$ so in the case

$$f_{\Gamma}.n = {}^t n \sigma(u,p) n = p$$

and we have the following Boundary condition:

 $p = f_{\Gamma}.n$

Execute Stokes-Pipe-Curve.edp

Incompressible Navier-Stokes with Newton method's

To solve F(u) = 0 the Newton's algorithm is

- 1. u^0 a initial guest
- 2. do
 - find w^n solution of $DF(u^n)w^n = F(u^n)$
 - $\blacktriangleright u^{n+1} = u^n w^n$
 - if $(||w^n|| < \varepsilon)$ break;

For Navier Stokes problem the algorithm is: $\forall v, q$,

$$F(u,p) = \int_{\Omega} (u.\nabla)u.v + \nu\nabla u : \nabla v - q\nabla . u - p\nabla . v + BC$$

$$DF(u,p)(w,w_p) = \int_{\Omega} (w.\nabla)u.v + (u.\nabla)w.v + \int_{\Omega} v\nabla w : \nabla v - q\nabla w - p_w \nabla v + BCO$$

Execute cavityNewton.edp

Execute NSNewtonCyl-100-mpi.edp