Computing self-similar solutions to the 1D Nonlinear Schrödinger Equation with a power-law nonlinearity

E.G. Charalampidis ${ }^{1, *}$
${ }^{1}$ Mathematics Department, California Polytechnic State University, San Luis Obispo, CA 93407-0403, USA (Dated: November 13, 2023)

PACS numbers:

The BVP we want to solve is:

$$
\begin{align*}
& \frac{d^{2} Q_{r}}{d x^{2}}+\left(Q_{r}^{2}+Q_{i}^{2}\right)^{\sigma} Q_{r}-Q_{r}-G\left(\frac{Q_{i}}{\sigma}+x \frac{d Q_{i}}{d x}\right)=0 \tag{1a}\\
& \frac{d^{2} Q_{i}}{d x^{2}}+\left(Q_{r}^{2}+Q_{i}^{2}\right)^{\sigma} Q_{i}-Q_{i}+G\left(\frac{Q_{r}}{\sigma}+x \frac{d Q_{r}}{d x}\right)=0 \tag{1b}
\end{align*}
$$

supplemented with zero Neumann BCs at $x= \pm L$. The parameter σ is set to a specific value but the parameter G is determined by the orthogonality condition:

$$
\begin{equation*}
\left\langle u-T(x), T(x) / \sigma+x \frac{d T}{d x}\right\rangle=0 \tag{2}
\end{equation*}
$$

where $T(x)=(1+\delta)^{\frac{1}{2 \delta}} \operatorname{sech}^{\frac{1}{\delta}}(\delta x)$ with $\delta=2$. The system given by Eqs. (1a)-(1b) and (2) is closed now. The initial guess for Q_{r} is $Q_{r}^{(0)}=(1+\sigma)^{\frac{1}{2 \sigma}} \operatorname{sech}^{\frac{1}{\sigma}}(\sigma x)$, and $Q_{i}^{(0)}=0$.

[^0]
[^0]: *Email: echarala@calpoly.edu

