Weak Formulation

monirulislam4566

April 2024

1 Variational formulation(using Backward-Euler)

$$
\begin{aligned}
\left(u^{n+1}-u^{n}, \phi\right) & +d t\left(\nabla w^{n+1}, \nabla \phi\right)-(g, \phi)+d t \sum_{e \in \varepsilon^{I}} \int_{e}\left[\left[\left[w^{n+1}\right]\right]\left\{\left\{\frac{\partial \phi}{\partial n}\right\}\right\}+4.5 \cdot \frac{\left[\left[w^{n+1}\right]\right]}{h_{e}}[[\phi]]+[[\phi]]\left\{\left\{\frac{\partial w^{n+1}}{\partial n}\right\}\right\}\right. \\
& \left.+\frac{1}{40} h_{e}\left[\left[\frac{\partial^{2} w^{n+1}}{\partial n^{2}}\right]\right][[\phi]]\right] d s-d t \sum_{e \in \varepsilon^{D}} \int_{e} w^{n+1} \frac{\partial \phi}{\partial n} d s+\left(w^{n+1}, \psi\right)-0.01\left(\nabla u^{n+1}, \nabla \psi\right) \\
& +\sum_{e \in \varepsilon^{I}} \int_{e}\left[\left[\left[u^{n+1}\right]\right]\left\{\left\{\frac{\partial \psi}{\partial n}\right\}\right\}+4.5 \cdot \frac{\left.\left[u^{n+1}\right]\right]}{h_{e}}[[\psi]]+[[\psi]]\left\{\left\{\frac{\partial u^{n+1}}{\partial n}\right\}\right\}\right. \\
& \left.+\frac{1}{40} h_{e}\left[\left[\frac{\partial^{2} u^{n+1}}{\partial n^{2}}\right]\right][[\psi]]\right] d s-\sum_{e \in \varepsilon^{D}} \int_{e} u^{n+1} \frac{\partial \psi}{\partial n} d s-\left(f\left(u^{n+1}\right), \psi\right)=0
\end{aligned}
$$

Here, ε^{I} is the collection of all interior edges and ε^{D} is the collection of all boundary edges and h_{e} is the charcteristic length of the edge e (which we can incorporate using lenEdge in FreeFem++). Here, $f(u)=u^{3}-u$ is the non-linear term. We have used newton's method to handel non-linearity. This equation i used to form the bilinear form but adding internal edges on weak form giving error on my programming. How, i incorporate the internal edges please tell??. Also, i have to find the L^{∞} error. Please share how to find L^{∞} error for the solution u using my codes. Also, please help how to write gnuplot in my codes. Please help. It is urgent.

Here, $[[w]]=$ jump of w and $\{\{\phi\}\}$ is the average of ϕ and simillarly for others symbols, n is the outward normal.

